Медицинская энциклопедия

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Элементарные частицы — первичные, далее неразложимые частицы, из которых, как полагают, состоит вся материя. В современной физике термин «элементарные частицы» обычно употребляется для обозначения большой группы мельчайших частиц материи, не являющихся атомами (см. Атом) или атомными ядрами (см. Ядро атомное); исключение составляет ядро атома водорода — протон.

К 80-м годам 20 века науке было известно более 500 элементарных частиц, большинство которых является нестабильными. К элементарным частицам относятся протон (p), нейтрон (n), электрон (e), фотон (γ), пи-мезоны (π), мюоны (μ), тяжелые лептоны (τ+, τ), нейтрино трех типов — электронные (Ve), мюонные (Vμ) и связанные с так называемым тяжелым дептоном (Vτ), а также «странные» частицы (К-мезоны и гипероны), разнообразные резонансы, мезоны со скрытым очарованием, «очарованные» частицы, ипсилон-частицы (Υ), «красивые» частицы, промежуточные векторные бозоны и др. Появился самостоятельный раздел физики — физика элементарных частиц.

История физики элементарных частиц началась с 1897 года, когда Томсоном (J. J. Thomson) был открыт электрон (см. Электронное излучение); в 1911 году Милликен (R. Millikan) измерил величину его электрического заряда. Понятие «фотон» — квант света — было введено Планком (М. Planck) в 1900 году. Прямые экспериментальные доказательства существования фотона были получены Милликеном (1912—1915) и Комптоном (A. Н. Compton, 1922). В процессе изучения атомного ядра Э. Резерфорд открыл протон (см. Протонное излучение), а в 1932 году Чедвик (J. Chadwick) — нейтрон (см. Нейтронное излучение). В 1953 году было экспериментально доказано существование нейтрино, которое Паули (W. Pauli) предсказал еще в 1930 году.

Элементарные частицы делят на три группы. Первая представлена единственной элементарной частицей — фотоном, γ-квантом, или квантом электромагнитного излучения. Вторая группа — это лептоны (греческий leptos мелкий, легкий), участвующие, кроме электромагнитных, еще и в слабых взаимодействиях. Известно 6 лептонов: электрон и электронное нейтрино, мюон и мюонное нейтрино, тяжелый τ-лептон и соответствующий нейтрино. Третью — основную группу элементарных частиц составляют адроны (греческий hadros большой, сильный), которые участвуют во всех видах взаимодействий, в том числе и в сильных взаимодействиях (см. ниже). К адронам относятся частицы двух типов: барионы (греч. barys тяжелый) — частицы с полуцелым спином и массой не меньше массы протона, и мезоны (греческий mesos средний) — частицы с нулевым или целым спином (см. Электронный парамагнитный резонанс). К барионам принадлежат протон и нейтрон, гипероны, часть резонансов и «очарованных» частиц и некоторые другие элементарные частицы. Единственным стабильным барионом является протон, остальные барионы нестабильны (нейтрон в свободном состоянии — нестабильная частица, однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Мезоны получили свое название потому, что массы первых открытых мезонов — пи-мезона и К-мезона — имели значения, промежуточные между массами протона и электрона. Позже были открыты мезоны, масса которых превышает массу протона. Адроны характеризуются также странностью (S) — нулевым, положительным или отрицательным квантовым числом. Адроны с нулевой странностью называют обычными, а с S ≠ 0 — странными. В 1964 г. Цвейг (G. Zweig) и Гелл-Манн (М. Gell-Mann) независимо друг от друга высказали предположение о кварковой структуре адронов. Результаты ряда экспериментов свидетельствуют о том, что кварки являются реальными материальными образованиями внутри адронов. Кварки обладают рядом необычных свойств, например дробным электрическим зарядом и др. В свободном состоянии кварков не наблюдали. Полагают, что все адроны образуются за счет различных сочетаний кварков.

Вначале элементарные частицы исследовали при изучении радиоактивного распада (см. Радиоактивность) и космического излучения (см.). Однако начиная с 50-х годов 20 века исследования элементарных частиц производят на ускорителях заряженных частиц (см.), в которых ускоренные частицы бомбардируют мишень или сталкиваются с частицами, летящими навстречу. При этом частицы взаимодействуют между собой, в результате чего происходит их взаимопревращение. Именно таким образом было открыто большинство элементарных частиц.

Каждая элементарная частица наряду со спецификой присущих ей взаимодействий описывается набором дискретных значений определенных физических величин, выражаемых целыми или дробными числами (квантовыми числами). Общими характеристиками всех элементарных частиц являются масса (m), время жизни (т), спин (J) — собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого, электрический заряд (Ω) и магнитный момент (μ). Электрические заряды изученных элементарных частиц по абсолютной величине являются целыми кратными числами от заряда электрона (е≈1,6*10-10 к). У известных элементарных частиц электрические заряды равны 0, ±1 и ±2.

Все элементарные частицы имеют соответствующие античастицы, масса и спин которых равны массе и спину частицы, а электрический заряд, магнитный момент и другие характеристики равны по абсолютной величине и противоположны по знаку. Например, античастицей электрона является позитрон — электрон с положительным электрическим зарядом. Элементарная частица, тождественная своей античастице, называется истинно нейтральной, например нейтрон и антинейтрон, нейтрино и антинейтрино и т. д. При взаимодействии античастиц друг с другом происходит их аннигиляция (см.).

При попадании элементарной частицы в материальную среду они взаимодействуют с ней. Различают сильное, электромагнитное, слабое и гравитационное взаимодействия. Сильное взаимодействие (сильнее электромагнитного) возникает между элементарными частицами, находящимися на расстоянии менее 10-15 м (1 ферми). При расстояниях более 1,5 ферми сила взаимодействия между частицами близка к нулю. Именно сильные взаимодействия между элементарными частицами обеспечивают исключительную прочность атомных ядер, лежащую в основе стабильности вещества в земных условиях. Характерной особенностью сильного взаимодействия является его независимость от электрического заряда. К сильному взаимодействию способны адроны. Сильные взаимодействия обусловливают распад короткоживущих частиц (время жизни порядка 10-23— 10-24 сек.), которые называют резонансами.

Электромагнитному взаимодействию подвержены все заряженные элементарные частицы, фотоны и нейтральные частицы, обладающие магнитным моментом (например, нейтроны). В основе электромагнитных взаимодействий лежит связь с электромагнитным полем. Силы электромагнитного взаимодействия примерно в 100 раз слабее сил сильного взаимодействия. Основная сфера действия электромагнитного взаимодействия — атомы и молекулы (см. Молекула). Такое взаимодействие определяет структуру твердых тел, характер хим. процессов. Оно не ограничивается расстоянием между элементарными частицами, поэтому размер атома примерно в 104 раз больше размера атомного ядра.

Слабые взаимодействия лежат в основе чрезвычайно медленно протекающих процессов с участием элементарных частиц. Например, нейтрино, обладающие слабым взаимодействием, могут беспрепятственно пронизывать толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады так называемых квазистабильных элементарных частиц, время жизни которых находится в пределах 108— 10-10 сек. Элементарные частицы, рожденные при сильном взаимодействии (за время 10-23—10-24 сек.), но распадающиеся медленно (10-10 сек.), называют странными.

Гравитационные взаимодействия между элементарными частицами дают чрезвычайно малые эффекты из-за ничтожности масс частиц. Этот вид взаимодействия хорошо изучен на макрообъектах, имеющих большую массу.

Многообразие элементарных частиц с разными физическими характеристиками объясняет трудность их систематизации. Из всех элементарных частиц только фотоны, электроны, нейтрино, протоны и их античастицы фактически являются стабильными, так как обладают большим временем жизни. Эти частицы представляют собой конечные продукты самопроизвольного превращения других элементарных частиц. Рождение элементарных частиц может происходить в результате первых трех типов взаимодействий. Для сильно взаимодействующих частиц источником рождения являются реакции сильного взаимодействия. Лептоны, что наиболее вероятно, возникают при распадах других элементарных частиц либо рождаются парами (частица + античастица) под воздействием фотонов.

Потоки элементарных частиц формируют ионизирующие излучения (см.), вызывающие ионизацию нейтральных молекул среды. Биологический эффект элементарных частиц связывают с образованием в облученных тканях и жидкостях организма веществ с высокой химической активностью. К таким веществам относятся свободные радикалы (см. Радикалы свободные), перекиси (см.) и другие. Элементарные частицы могут оказывать и прямое действие на биомолекулы и надмолекулярные структуры, вызывать разрыв внутримолекулярных связей, деполимеризацию высокомолекулярных соединений и т. п. Определенное значение в характере действия элементарных частиц на организм могут иметь процессы миграции энергии и образования метастабильных соединений, возникающих в результате длительного сохранения состояния возбуждения в некоторых макромолекулярных субстратах. В клетках подавляется или извращается активность ферментных систем, изменяется структура клеточных мембран и поверхностных клеточных рецепторов, что приводит к повышению проницаемости мембран и изменению диффузионных процессов, сопровождающихся явлениями денатурации белков, дегидратации тканей, нарушением внутренней среды клетки. Поражаемость клеток в значительной степени зависит от интенсивности их митотического деления (см. Митоз) и обмена веществ: с повышением этой интенсивности радиопоражаемость тканей увеличивается (см. Радиочувствительность). На этом свойстве потоков элементарные частицы — ионизирующего облучения — основано их применение для лучевой терапии (см.), особенно при лечении злокачественных новообразований. Проникающая способность заряженных элементарных частиц в большой степени зависит от линейной передачи энергии (см.), то есть от средней энергии, поглощаемой средой в месте прохождения заряженной частицы, отнесенной к единице ее пути.

Повреждающее действие потока элементарных частиц особенно сказывается на стволовых клетках кроветворной ткани, эпителии яичек, тонкой кишки, кожи (см. Лучевая болезнь, Лучевые повреждения). В первую очередь поражаются системы, находящиеся во время облучения в состоянии активного органогенеза и дифференцировки (см. Критический орган).

Биологическое и терапевтическое действие элементарных частиц зависит от их вида и дозы излучения (см. Дозы ионизирующих излучений). Так, например, при воздействии рентгеновского излучения (см. Рентгенотерапия), гамма-излучения (см. Гамма-терапия) и протонного излучения (см. Протонная терапия) на все тело человека в дозе около 100 рад наблюдается временное изменение кроветворения; внешнее воздействие нейтронного излучения (см. Нейтронное излучение) ведет к образованию в организме различных радиоактивных веществ, например радионуклидов натрия, фосфора и др. При попадании в организм радионуклидов, являющихся источниками бета-частиц (электронов или позитронов) или гамма-квантов, происходит так называемое внутреннее облучение организма (см. Инкорпорирование радиоактивных веществ). Особенно опасны в этом отношении быстро резорбирующиеся радионуклиды с равномерным распределением в организме, напр. тритий (3H) и полоний-210.

Радионуклиды, являющиеся источниками элементарных частиц и участвующие в обмене веществ, используют в радиоизотопной диагностике (см.).

Библиогр.: Ахиезер А. И. и Рекало М. П. Биография элементарных частиц, Киев, 1983, библиогр.; Боголюбов Н. Н. и Широков Д. В. Квантовые поля, М., 1980; Борн М. Атомная физика, пер. с англ., М., 1965; Джонс X. Физика радиологии, пер. с англ.. М., 1965; Кронгауз А. Н., Ляпидевский В. К. и Фролова А. В. Физические основы клинической дозиметрии, М., 1969; Лучевая терапия с помощью излучений высокой энергии, под ред. И. Беккера и Г. Шуберта, пер. с нем., М., 1964; Тюбиана М. и др. Физические основы лучевой терапии и радиобиологии, пер. с франц., М., 1969; Шпольский Э. В. Атомная физика, т. 1, М., 1984; Янг Ч. Элементарные частицы, пер. с англ.. М., 1963.

Р. В. Ставнцкий.

+1
0
+1
0
+1
0
Back to top button